Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (*Chelonia mydas*) as implications for rehabilitation

André S. Colferai a,⁎, Rodolfo Pinho Silva-Filho b, Aryse Moreira Martins b, Leandro Bugoni a

a Waterbirds and Sea Turtles Laboratory, Institute of Biological Sciences, Universidade Federal do Rio Grande - FURG, Campus Carreiros, CP 474, CEP 96203-900 Rio Grande, RS, Brazil
b CRAM-FURG - Centro de Recuperação de Animais Marinhos, Universidade Federal do Rio Grande - FURG, Ten. Cap. Heitor Perdigão Street, 10, CEP 96200-580 Rio Grande, RS, Brazil

ARTICLE INFO

Article history:
Received 25 November 2016
Received in revised form 20 March 2017
Accepted 25 March 2017
Available online 11 April 2017

Keywords:
Faecalomas
Obstructions
Plastics
Sea turtles
South Atlantic Ocean

ABSTRACT

Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (*Chelonia mydas*) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24 g) and area (146.74 cm²) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. © 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Contamination by anthropogenic marine debris (AMD) is regarded as the most widely distributed and long-lasting anthropic impact (Barnes et al., 2009). Driven by the use of disposables, the annual production of plastics has increased from 1.5 million tons in 1950 to 280 million tons in 2011 (Plastic Europe, 2012). Due to characteristics such as durability and lightness, low cost, and its use in short-lived disposable products (Hopewell et al., 2009), plastics are currently found in all oceans and coastal ecosystems (Ryan and Moloney, 1993; Ivar-do-Sul and Costa, 2007; Barnes et al., 2009; Thompson et al., 2009). Although there are few data on the amount of AMD input in the marine environment, it is estimated that, globally, the seas receive approximately 6.4 million tons of AMD every year (UNEP, 2005), of which 80% is from land-based sources (Faris and Hart, 1994). Materials generically known as marine debris include not only plastic material but also debris from fishing activities, such as fishhooks, fishing nets, glass, polystyrene, foam, aluminium, cotton, and rubber. Studies on the effects of such material on ocean and marine animals have grown in recent years (Ivar-do-Sul and Costa, 2007), and demonstrate growing effects on biodiversity.

The association of anthropogenic marine debris with marine animals, through direct ingestion, i.e. intentional ingestion as prey and/or indirect consumption, i.e. through ingestion of AMP which were previously in

prey guts, has already been documented for at least 693 species (Gall and Thompson, 2015). In the base of the food web, invertebrates (Murray and Cowie, 2011; Wright et al., 2013) and fish (Lusher et al., 2013), are frequently associated with microplastics (<5 mm) deposited in sediment or present in the water column, which can be transferred to organisms higher in the trophic chain, such as birds (Codina-García et al., 2013), cetaceans (Baulch and Perry, 2014; Benedetto and Awabdi, 2014) and sea turtles (Bugoni et al., 2001; Tourinho et al., 2009).

Consumers at the top of the trophic chain, including humans, indirectly ingest plastic fragments formed by the degradation of larger plastic pieces, or microparticles widely used in cosmetic formulations, such as for exfoliants and toothpastes (Gregory, 1996; Fendall and Sewell, 2009). However, larger-sized plastics, before breaking down to microplastics in the marine environment through exposure to ultraviolet radiation, hydrolysis, and physical forces, affect organisms in different ways, such as through entanglement, suffocation, bodily mutilation and ingestion (Nelms et al., 2016). In a recent review, all seven species of sea turtle were reported to have interacted with AMD, either through ingestion or entanglement (Nelms et al., 2016).

The effects of pollution by AMD in sea turtles and other air-breathing vertebrates, such as birds and mammals, can be immediate and mechanical, such as entanglement and drowning, or result in injuries from contact with sharp or perforating components (Tourinho et al., 2009). Ingestion can have sublethal effects, such as interferences with lipids metabolism (Shulman and Lutz, 1995) that contributes to the accumulation of gases and the consequent reduction of floating capacity.
and limited ability to obtain food and avoid predation. Other problems arising from ingestion are a false sense of satiety, diet dilution, and consequently a decrease in the growth rate and a depletion of energy reserves (McCauley and Bjorndal, 1999). Additionally, debris can cause obstruction of the gastrointestinal tract (GT). The obstruction may be associated with faecalomas and compaction of the dehydrated gastrointestinal content, and diverticulosis (Erlacher-Reid et al., 2013). A partial or total obstruction of the GT by AMD can lead to a process of ischaemia/hypoxia, i.e., a decrease or absence of vascular blood flow, followed by reflux, and the production of reactive oxygen species (ROSs), which play an important role in endothelial tissue damage (Parks et al., 1983). ROSs can also damage distant organs located far from the infection, which leads to the development of systemic inflammatory response syndrome (Ceppa et al., 2003), or even cause infiltration of neutrophils in the lungs, thus contributing to the development of acute respiratory distress syndrome (Koksoy et al., 2001).

Sea turtles are prone to obstruction and formation of faecalomas because they have twisted intestines that offer spaces for abrasion and accumulation of residues (Shulman and Lutz, 1995). Green turtles (Chelonia mydas), due to their herbivorous diet, have a GT proportionally longer than carnivorous sea turtles, thus cursing them with a greater cumulation of residues (Shulman and Lutz, 1995). Green turtles are exposed to AMD in virtually all stages and habitats of their life cycle (Schuylers et al., 2014a). Some studies demonstrated that the ingestion of small amounts of plastic sheets by green turtles had lethal effects due to complete obstruction of the GT (Bjorndal et al., 1994; Bugoni et al., 2001; Tourinho et al., 2009; Guebert-Bartholo et al., 2011). AMD intake can also cause internal injuries in the GT when scar tissue forms a constriction or decreased intestinal lumen, thus contributing to a total or partial obstruction. In addition, AMD usually results in the accumulation of food and a consequent formation of diverticulum (Erlacher-Reid et al., 2013).

Green turtles are exposed to AMD in virtually all stages and habitats of their life cycle (Schuylers et al., 2014a, 2014b), and is known as the sea turtle species most commonly reported to interact with anthropogenic debris. They have a cosmopolitan distribution (Meylan and Meylan, 1999) in tropical and subtropical seas and occasionally in the temperate waters of the Atlantic, Pacific, and Indian Oceans, and the Mediterranean Sea (Márquez, 1990). Green turtles depend on multiple marine environments during different stages of their development, including coastal environments, where females lay their eggs, adults feed on algae and seagrasses, and juveniles recruit after their first years of life in the open-ocean (Meylan and Meylan, 1999).

When recruiting to neritic waters, juveniles shift from a predominantly carnivorous diet to an herbivorous diet (Bjorndal, 1997). In the southwestern (SW) Atlantic Ocean, Guebert-Bartholo et al. (2011) found a large variety of food items in the GT of juvenile green turtles that identified these individuals as omnivorous with an opportunistic diet. The most common food items were seaweed, clam shells, plants and insects. South of this region, Bugoni et al. (2003) reported that molluscs were the main sources of food, although crustaceans, fish, plants and other items were also reported. Recent studies using stable isotopes and/or direct observations show that in some areas, the consumption of animal matter can be high even in adults or large juveniles (Amoroco and Reina, 2007; Lemons et al., 2011; Reisser et al., 2013; González-Carman et al., 2014a), in contrast to the idea that green turtles are strictly herbivorous in their neritic phase. Notwithstanding the discussion of green turtles being selective (Bjorndal, 1979) or opportunists in regard to their diet, they invariably ingest the food items more abundant and available in the environment (Ferreira et al., 2006).

The neritic area along the southern Brazilian coast is an important region for feeding and development of C. mydas (Guebert-Bartholo et al., 2011), frequented by animals with a curved carapace length (CCL) between 30 and 50 cm (Bugoni et al., 2001), and a mean CCL of 39.2 ± 6.0 cm (Monteiro et al., 2016), especially in the austral summer and spring.

In the same region where the current study was carried out, two previous studies of animals found stranded and dead on the beaches demonstrated the high intake of AMD by green turtles. Among the 38 specimens studied by Bugoni et al. (2001), 60.5% presented AMD in the oesophagus and stomach. Later, Tourinho et al. (2009) analysed 34 individuals, and found that 100% of the GT of green turtles contained AMD. Upon analysing their complete digestive tracts, plastics and fishing-related materials were found to be present in 71% and 21% of these individuals, respectively. Although AMD ingestion by green turtles is a well-known phenomenon in multiple locations around the globe (see the revision in Nelms et al., 2016), including the SW Atlantic Ocean, the association of AMD with debilitating clinical conditions and the different susceptibilities of the organs along the GT are poorly understood. In a scenario where many sea turtles reach rehabilitation centers in debilitated state due to interaction with AMD, fishing nets/drowning, and often do not respond treatment and die, the limitation in knowledge on the fate and effects of debris after ingestion, as well as the establishment of protocols for rehabilitation, is essential. In this context, we investigated the location of AMD along the gastrointestinal tract of juvenile green turtles by determining the patterns in which debris are present along the digestive tract, and their association with obstructions and faecalomas. Unlike previous studies on this topic, we analysed the retention susceptibility of debris from different regions of the intestine, oesophagus and stomach, based on animals found alive that died during an attempt at rehabilitation.

2. Materials and methods

Debilitated turtles found along Rio Grande do Sul state beaches, Brazil, were transported to the marine animal rescue centre at the Federal University of Rio Grande – FURG (CRAM-FURG), where they received treatment aimed at achieving their release back into the ocean. Sea turtles often arrive at CRAM in a debilitated state, mainly due to interaction with AMD and fishing activities/drowning. Turtles often do not respond to treatment and die. These animals are regularly necropsied in order to better understand the cause of death and the distribution of AMD along the GT.

2.1. Study area

Green turtles were obtained from live strandings on a stretch of beach approximately 350 km long, between Barra da Lagoa do Peixe (31°19′S; 50°58′W) and Arroio Chuí, at the Uruguayan border (33°45′S; 53°23′W), in the state of Rio Grande do Sul, Brazil. This region is characterized by extensive sandy beaches, interrupted by the mouth of the Lagoa dos Patos, where the estuary meets the ocean.

2.2. Turtle sampling

In this study, 62 GTs of green turtles obtained between 2011 and 2014 were analysed. From these individuals, the curved carapace length (CCL) (the distance from the midpoint of the nuchal to the extreme of the supracaudal scutes), the curved carapace width (CCW) (Bolten, 1999), and the body mass (in kg), were collected. During necropsy, sex was determined through visual macroscopic analysis of the gonads (Work, 2000), and the GTs were removed and frozen whole. The detailed necropsy of the GT followed the methodology of Work (2000). The total length of the digestive tract and of each organ separately (oesophagus, stomach, and intestines) and the subdivision of the intestine, were measured with a tape measure in cm, and the weight of the full and empty tract (content removed) were recorded on a scale (in g).

Each GT was divided according to the natural divisions of the organs: oesophagus (from the initial portion of the tube to the gastroesophageal sphincter); stomach (from the gastroesophageal sphincter to the duodenal constriction); and intestine (from the beginning of the duodenum to the end of the caecal opening). Externally, there is not a clear division between the regions of the small intestine (duodenum, jejunum and ileum), or between the small intestine and the large intestine. However,
and thus generating two smaller sections. This resulted in the fraction-
again in half; the last section was in the last quarter, split again in half.
Magalhães et al. (2010), through histological analysis, showed that the
large intestine comprises over 60% of the intestine. Thus, due to the ab-
sence of natural landmarks or divisions, the intestines were divided into
five parts based on the large size and morphological and physiological
differences from the beginning to the posterior portions. Due to the de-
terioration of the mucous layer, which separates intestinal regions
(Magalhães et al., 2010), the intestines were arbitrarily divided as fol-
lows: initially, the intestine was split in half and each half was divided
again in half; the last section was in the last quarter, split again in half
and thus generating two smaller sections. This resulted in the fraction-
ation of intestines in five parts (Fig. 1). Thus, “intestine 1” corresponds
to the small intestine; “intestine 2” extends from the end of the small in-
testine to the beginning of the large intestine; “intestine 3” and “intest-
ine 4” correspond to the large intestine only, and “intestine 5”
comprises the final portion of the large intestine and the whole rectum.
With this partitioning, GTs of different length are comparable because
each section covers the same region of the intestine.

2.3. Faecalomas and obstructions

Faecaloma is defined as a large mass of hardened fecal material of
varying sizes, related to a series of physiological conditions, often
interacting with AMD (Fig. 2), which may appear when there is obstruc-
tion of the intestinal transit or be the cause of it. Therefore, it occurs in
the intestine only, where faeces are formed and where water absorption
occurs. Faecaloma is not a disease, but a pathological condition that can
occur in many different conditions. Obstructions, on their turn, can
occur in any region of the gastrointestinal tract and are characterized
by obstruction of partial or complete passage of food and liquids, caused
by reduced motility or AMDs that precluded passage (Fig. 2). There are
regions anatomically prone to its occurrence, especially near the sphinc-
ters, as in the curvature of the oesophagus near the cardiac sphincter
and in the blind bottom of the stomach near the pyloric sphincter.

2.4. AMD analysis

The necropsy was accompanied by a description of the location of
AMD, faecalomas and diverticula. Organic material and AMD were re-
moved from the intestine and the contents and organs were weighed
separately. Debris fragments were washed in running water, using a
4 mm mesh sieve, with subsequent drying in an oven.

AMD were analysed under a stereoscopic microscope and assigned
to different categories of use, according to the European Commission
(2013). Briefly, materials such as pieces of bags and food packaging
were referred as “plastics sheets”; plastic pieces of various sizes, from
containers, boxes, and lids of condiments were assigned to the “plastic
fragments” category; “filiform material” included monofilament and
multifilament lines from such things as fishing nets and ropes; charcoal
used to cook food was categorized as “food drops”; styrofoam and sil-
ICON were assigned to “chemical contaminants”; and materials such as
the rubber of party balloons and adhesive bandages were included in
the category “other”. AMD were also categorized according to colour.

Faecalomas were counted in each section of the GT intestine, and as-
associated AMD were also counted, weighed, measured, and classified ac-
cording to colour and the abovementioned categories of use.

For each section of the GT, AMD fragments were counted and
weighed. For each section, the following parameters were calculated:
the absolute frequency of occurrence (FO), the relative frequency of oc-
currence (FO%), the average area occupied by AMD, as determined by
placing the AMD over graph paper (A, in cm²), and the average mass
(M, in g) obtained with a high precision digital scale. From these data,
for all 7 sections the relative contribution by mass (M%), area (A%)
and number (%) were calculated, and these same parameters were
classified according to the categories of use and colour described above.

The M and N of AMD were compared between turtles with and with-
out faecalomas, through Student’s t-test, after checking for normality
and homoscedasticity of residuals. Additionally, the relationships be-
tween the size of each section of the GT with the expected contribution
by mass and number of AMD were compared by a G-test, which is
equivalent to a χ²-test, but uses decimal values. The χ² test with the
Yates continuity correction was used to compare the number of AMD
pieces between turtles with and without faecalomas, using only the in-
testine for this analysis as faecalomas are not possible in the initial parts
of the GT. Finally, Pearson’s correlation between size of faecaloma (as
measured by mass) and the amount of debris (as measured in grams
and in the number of items) was calculated. All statistical tests were cal-
culated using BioEstat software version 5.3 (Ayres et al., 2007), and sig-
nificance was obtained when P < 0.05.

Fig. 1. Section of the gastrointestinal tract of a green turtle (Chelonia mydas) that died in rehabilitation in southern Brazil. The whole tract was divided according to the natural organs and intestines divided into five physiological morphologically distinct parts. Eso = oesophagus; Sto = Stomach; Int = Intestine. On the right, proportions before opening (above) and after dissection (below).
3. Results

3.1. Biometrics and sex ratio

The sexing of 30 individuals demonstrated a large predominance of females (27 turtles, 90%) with a resulting sex ratio of 9:1. The mean CCL was 37.26 ± 3.47 cm (min = 31.00, max = 44.40 cm, n = 32), and the mean body mass was 6.24 ± 6.15 kg, median = 4.86 kg (min = 2.51, max = 39.00 kg, n = 33). Animals remained in rehabilitation between 0 and 114 days (17.83 days on average).

The mean total length of the GTs was 334.23 cm; the mean mass of tissues + contents was 511.55 g, and mean mass of tissue alone was 213.10 g (Table 1). The mean length of the GT of turtles that had (n = 45) and had not (n = 17) ingested AMD was 326.58 cm and 354.47 cm, respectively (t_{60} = 1.38, P = 0.17).

3.2. Anthropogenic solid debris

Among the 62 turtles analysed, 72.58% presented AMD in the GT, with a total of 1019 items found in all GT sections pooled. The GT sections differed in the mass (G-test = 537.20; df = 6; P < 0.0001), and number (G-test = 1099.99; df = 6; P < 0.001) of AMD, even controlling for the length of each section. The stomach, followed by intestines 4 and 5, had the highest amounts of AMD. In the stomach the mean number of items, mass and area was 5.68 items, 4.24 g and 146.74 cm², respectively, followed by intestine 4 (3.53, 1.05 g and 37.09 cm², respectively) and intestine 5 (2.68, 0.81 g and 27.81 cm², respectively). The stomach and intestines 4 and 5 had similar FO% (59.70, 59.70 and 56.40%, respectively). The initial sections of the intestine had lower values of FO% than the later sections and the stomach in most variables measured (Table 2).

In relation to categories of use, there was a predominance of plastic material in comparison to other categories. Plastic fragments were present in high quantity, in terms of mean mass M = 3.60 g and M% = 38.13%, and number (N = 8.52 items, N% = 33.61%), followed by the plastic sheet category (M = 1.33 g and M% = 13.56%; N = 4.19 items

![Fig. 2. Above are two examples of obstructions found in stomach of green sea turtles (Chelonia mydas) in southern Brazil, composed by compacted food material and anthropogenic solid debris. Obstructions could also be found in intestines. Faecalomas (below) are found in intestines only, also composed by food and plastics or other debris, but food is at a more advanced digestion stage and with a hardened consistency. Photos: CRAM archives.](image-url)

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Tissue section mass (g)</th>
<th>Tissue mass + fecal content (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oesophagus</td>
<td>15.48 ± 2.78 (10–32)</td>
<td>38.95 ± 18.62 (14–128)</td>
</tr>
<tr>
<td>Stomach</td>
<td>27.73 ± 5.75 (17–43)</td>
<td>43.31 ± 16.62 (21–93)</td>
</tr>
<tr>
<td>Intestine 1</td>
<td>14.48 ± 28.22 (46–266)</td>
<td>49.24 ± 23.81 (9–119)</td>
</tr>
<tr>
<td>Intestine 2</td>
<td>74.24 ± 29.21 (43–273)</td>
<td>22.85 ± 10.65 (5–64)</td>
</tr>
<tr>
<td>Intestine 3</td>
<td>70.40 ± 14.90 (27–118)</td>
<td>24.44 ± 12.85 (9–69)</td>
</tr>
<tr>
<td>Intestine 4</td>
<td>36.66 ± 7.48 (13–59)</td>
<td>17.58 ± 9.46 (5–52)</td>
</tr>
<tr>
<td>Intestine 5</td>
<td>35.23 ± 7.77 (13–58)</td>
<td>17.13 ± 8.31 (3–43)</td>
</tr>
<tr>
<td>Total GT</td>
<td>334.23</td>
<td>213.10</td>
</tr>
</tbody>
</table>

Table 1
The length and mass of the section organs, with and without content, along the gastrointestinal tract (GT) of green turtles (Chelonia mydas) necropsied in southern Brazil (n = 62). Values represent the mean ± 1 standard deviation (minimum – maximum).
and N% = 22.41%). Filiform materials were ranked third, with a high mean mass and number of items (Table 3).

The colour assignment resulted in items classified as yellow, blue, white, grey, orange, brown, black, pink, purple, transparent, green and red, but white items occurred in the highest mean number and with the highest mean mass (5.48 items and 4.71 g, respectively), followed by transparent items (2.23 items and 1.96 g) and black items (1.90 and 1.71 g) (Table 4).

3.3. Faecalomas and obstructions

Intestine 4 had the highest occurrence of obstructions, found in 9 individuals, followed by the stomach and intestine 3, with 7 and 5 individuals, respectively. There were no diverticula in any of the GT analysed.

The mean mass of AMD in turtles with and without faecalomas was 5.70 and 3.20 g, respectively \((t_{28} = 2.05, P = 0.04)\), and the mean number of items in turtles with and without faecalomas was 18.20 and 1.71 g) \((t_{28} = 2.05, P = 0.05)\). A high correlation was detected between the size/mass of faecalomas and the mass of the associated AMD \((r = 0.66, n = 18, P = 0.003)\), but larger masses of faecalomas did not correlate with the largest number of AMD \((r = -0.08, n = 18, P = 0.74)\). Turtles with and without faecaloma had a similar propensity for having AMD in the intestines \((\chi^2_{\text{Yates}} = 0.70, P = 0.40)\).

4. Discussion

All individuals in this study, as in previous studies in the area or other coastal areas around the globe, were juveniles severely impacted by AMD in their GT (72.6% of individuals sampled). Plastic fragments were the most commonly found AMD, with transparent and white the most frequent colours. The GT region with the highest occurrence of AMD was the stomach, followed by regions of greater water absorption, i.e. the final portion of the intestine. These regions also had large number of obstructions and faecalomas, respectively. The presence of AMD had also been found to be associated with the formation of faecalomas. Green turtles analysed in the current study had CCL similar to those from the same area studied by Bugoni et al. (2001) and Tourinho et al. (2009) with a focus on debris ingestion. According to Goshe et al. (2010), these CCL values correspond to juveniles, confirming previous studies that indicate the southern coast of Brazil is an important feeding and development area for juveniles (Bugoni et al., 2001).

The frequent occurrence of AMD in GTs confirms previous findings in the same region, based on individuals found stranded and dead. Bugoni et al. (2001) recorded FO% = 60.5% in 56 green turtles, although they only analysed the oesophagus and stomach, whereas Tourinho et al. (2009) found FO% = 100% with an analysis throughout the GT of 29 green turtles. However, the present study differs from these studies because the animals were found alive and sent to rehabilitation. In our study, 27% of the individuals sent to rehabilitation who subsequently died did not contain AMD in the GT, which suggests that the death occurred by other causes. Drowning in fishing nets and hypothermia during winter months are also causes of green turtle mortality in this region (Bugoni et al., 2001; Vélez-Rubio et al., 2013). Notwithstanding, the mean AMD mass of 5.66 g found in the present study was substantially higher than 0.5 g, which is suggested as the threshold for the death of juvenile green turtles (Santos et al., 2015).

3.3. Faecalomas and obstructions

Intestine 4 had the highest occurrence of obstructions, found in 9 individuals, followed by the stomach and intestine 3, with 7 and 5 individuals, respectively. There were no diverticula in any of the GT analysed.

The mean mass of AMD in turtles with and without faecalomas was 5.70 and 3.20 g, respectively \((t_{28} = 2.05, P = 0.04)\), and the mean number of items in turtles with and without faecalomas was 18.20 and 1.71 g, respectively \((t_{28} = 2.05, P = 0.05)\). A high correlation was detected between the size/mass of faecalomas and the mass of the associated AMD \((r = 0.66, n = 18, P = 0.003)\), but larger masses of faecalomas did not correlate with the largest number of AMD \((r = -0.08, n = 18, P = 0.74)\). Turtles with and without faecaloma had a similar propensity for having AMD in the intestines \((\chi^2_{\text{Yates}} = 0.70, P = 0.40)\).

4. Discussion

All individuals in this study, as in previous studies in the area or other coastal areas around the globe, were juveniles severely impacted by AMD in their GT (72.6% of individuals sampled). Plastic fragments were the most commonly found AMD, with transparent and white the most frequent colours. The GT region with the highest occurrence of AMD was the stomach, followed by regions of greater water absorption, i.e. the final portion of the intestine. These regions also had large number of obstructions and faecalomas, respectively. The presence of AMD had also been found to be associated with the formation of faecalomas. Green turtles analysed in the current study had CCL similar to those from the same area studied by Bugoni et al. (2001) and Tourinho et al. (2009) with a focus on debris ingestion. According to Goshe et al. (2010), these CCL values correspond to juveniles, confirming previous studies that indicate the southern coast of Brazil is an important feeding and development area for juveniles (Bugoni et al., 2001).

The frequent occurrence of AMD in GTs confirms previous findings in the same region, based on individuals found stranded and dead. Bugoni et al. (2001) recorded FO% = 60.5% in 56 green turtles, although they only analysed the oesophagus and stomach, whereas Tourinho et al. (2009) found FO% = 100% with an analysis throughout the GT of 29 green turtles. However, the present study differs from these studies because the animals were found alive and sent to rehabilitation. In our study, 27% of the individuals sent to rehabilitation who subsequently died did not contain AMD in the GT, which suggests that the death occurred by other causes. Drowning in fishing nets and hypothermia during winter months are also causes of green turtle mortality in this region (Bugoni et al., 2001; Vélez-Rubio et al., 2013). Notwithstanding, the mean AMD mass of 5.66 g found in the present study was substantially higher than 0.5 g, which is suggested as the threshold for the death of juvenile green turtles (Santos et al., 2015).

3.3. Faecalomas and obstructions

Intestine 4 had the highest occurrence of obstructions, found in 9 individuals, followed by the stomach and intestine 3, with 7 and 5 individuals, respectively. There were no diverticula in any of the GT analysed.

The mean mass of AMD in turtles with and without faecalomas was 5.70 and 3.20 g, respectively \((t_{28} = 2.05, P = 0.04)\), and the mean number of items in turtles with and without faecalomas was 18.20 and 12.00, respectively \((t_{28} = 2.05, P = 0.05)\). A high correlation was detected between the size/mass of faecalomas and the mass of the associated AMD \((r = 0.66, n = 18, P = 0.003)\), but larger masses of faecalomas did not correlate with the largest number of AMD \((r = -0.08, n = 18, P = 0.74)\). Turtles with and without faecaloma had a similar propensity for having AMD in the intestines \((\chi^2_{\text{Yates}} = 0.70, P = 0.40)\).

4. Discussion

All individuals in this study, as in previous studies in the area or other coastal areas around the globe, were juveniles severely impacted by AMD in their GT (72.6% of individuals sampled). Plastic fragments were the most commonly found AMD, with transparent and white the most frequent colours. The GT region with the highest occurrence of AMD was the stomach, followed by regions of greater water absorption, i.e. the final portion of the intestine. These regions also had large number of obstructions and faecalomas, respectively. The presence of AMD had also been found to be associated with the formation of faecalomas. Green turtles analysed in the current study had CCL similar to those from the same area studied by Bugoni et al. (2001) and Tourinho et al. (2009) with a focus on debris ingestion. According to Goshe et al. (2010), these CCL values correspond to juveniles, confirming previous studies that indicate the southern coast of Brazil is an important feeding and development area for juveniles (Bugoni et al., 2001).

The frequent occurrence of AMD in GTs confirms previous findings in the same region, based on individuals found stranded and dead. Bugoni et al. (2001) recorded FO% = 60.5% in 56 green turtles, although they only analysed the oesophagus and stomach, whereas Tourinho et al. (2009) found FO% = 100% with an analysis throughout the GT of 29 green turtles. However, the present study differs from these studies because the animals were found alive and sent to rehabilitation. In our study, 27% of the individuals sent to rehabilitation who subsequently died did not contain AMD in the GT, which suggests that the death occurred by other causes. Drowning in fishing nets and hypothermia during winter months are also causes of green turtle mortality in this region (Bugoni et al., 2001; Vélez-Rubio et al., 2013). Notwithstanding, the mean AMD mass of 5.66 g found in the present study was substantially higher than 0.5 g, which is suggested as the threshold for the death of juvenile green turtles (Santos et al., 2015).
Such a structure clearly promotes retention of AMD. Aside from the stomach, regions with greater quantities of AMD were intestines 4, 5 and 3, in order of decreasing quantity, corresponding to the large intestine and rectum, which is where most water absorption occurs (Wyneken, 2001; Magalhães et al., 2010). Such a region with intense fecal dehydration increases the capacity for AMD retention and possible formation of faecalomas and obstructions. When the amount of obstructions and faecalomas are compared along the entire GT, intestine 4 presented the highest incidence, followed by the stomach and intestine 3, demonstrating that 1) there is a different susceptibility to AMD retention along the GT and 2) the pyloric sphincter accounts for retention in the stomach, and water absorption accounts for the AMD associated with faecaloma in intestines. These organs/regions deserve greater attention for use in clinical interventions.

It is unclear whether faecalomas are formed due to retention of AMD or, on the other hand, whether the presence of early faecalomas retain AMD, subsequently increasing faecaloma size. The presence of faecalomas not associated with AMD, as demonstrated in this study from the result that the chance of finding plastic in turtles with and without faecalomas is similar, demonstrates that causes other than anthropogenic debris promote faecaloma formation. In an opposing view, AMD have been postulated as initiators of faecaloma formation, through direct GT obstruction, or indirectly by causing internal injuries, with scar tissue causing partial or total obstruction (Erlacher-Reid et al., 2013). Independent of the causal mechanism for faecaloma formation, it seems clear that AMD accumulation intensifies once faecaloma is present, as demonstrated by the high correlation between faecaloma mass and AMD mass and number.

5. Conclusion and recommendations

The most relevant conclusion from the present study is that AMD are contributors to, and eventually the initiators of, obstructions of the GT in green turtles. Our results also indicate that hydration and treatments with oil to stimulate the motility of the retained material are important veterinary procedures for assisting the expulsion of debris, particularly those associated with small-sized faecalomas.

From the perspective of treatment, it is suggested that hydration and the use of mineral oil may be effective for supporting peristaltic movements and removal of AMD and AMD-associated faecalomas located in the posterior portion of the intestines. The use of antioxidant supplementation in animals suspected of having ingested AMD, as proposed by Walsh (1999), is reinforced by the present study. Ischaemia-reperfusion processes can generate oxidative stress, as demonstrated by the correlation between the increase of AMD ingestion and the failure of the antioxidant defence system (Parks et al., 1983). Therefore, we suggest further studies on the effectiveness of the use of mineral oil and hydration in the rehabilitation of small-sized turtles. Histopathological studies could also shed light on tissue damage caused by AMD and faecalomas. In addition, studies on the potential effect of intestinal twists and folds on the retention of AMD can further improve the current study, with important implications for veterinary interventions and rehabilitation.

Acknowledgements

The authors thank the team of the Marine Animal Rescue Centre at the Federal University of Rio Grande – FURG (CRAM-FURG) for collection of gastrointestinal tracts of green turtles and also for the insightful discussions; members of the Waterbirds and the Sea Turtle Laboratory (LAATM – FURG), for technical and scientific support during weekly meetings, especially biologist Suzana P. Martins, and for their support in the screening and analysis of gastrointestinal tracts; Cinthia C. da Silva, Edélti F. Albertoni and an anonymous reviewer for critical revision; and Marcio Parmelli for great support in translation. Leandro Bugoni is a research fellow from the Brazilian CNPq (Proc. No. 310550/2015-7).

Table 4: Colours of anthropogenic solid debris found in the gastrointestinal tracts of green sea turtles (Chelonia mydas) from southern Brazil. Values represent the mean ± 1 standard deviation (minimum – maximum).

<table>
<thead>
<tr>
<th>Colour</th>
<th>Mass (g)</th>
<th>No. of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>1.01 ± 1.12 (0.02–4.49)</td>
<td>1.47 ± 2.12 (0–8)</td>
</tr>
<tr>
<td>Blue</td>
<td>0.53 ± 0.56 (0.01–2.20)</td>
<td>1.53 ± 2.12 (0–8)</td>
</tr>
<tr>
<td>White</td>
<td>3.54 ± 3.27 (0.07–13.77)</td>
<td>3.48 ± 5.52 (0–22)</td>
</tr>
<tr>
<td>Orange</td>
<td>0.52 ± 0.99 (0.01–3.79)</td>
<td>0.44 ± 0.93 (0–5)</td>
</tr>
<tr>
<td>Brown</td>
<td>0.25 ± 0.20 (0.02–0.67)</td>
<td>0.48 ± 0.78 (0–3)</td>
</tr>
<tr>
<td>Black</td>
<td>1.09 ± 2.12 (0.01–13.22)</td>
<td>1.90 ± 2.10 (0–9)</td>
</tr>
<tr>
<td>Pink</td>
<td>0.37 ± 0.33 (0.02–1.29)</td>
<td>0.29 ± 0.64 (0–3)</td>
</tr>
<tr>
<td>Purple</td>
<td>0.19 ± 0.16 (0.02–0.35)</td>
<td>0.06 ± 0.25 (0–1)</td>
</tr>
<tr>
<td>Transparent</td>
<td>1.19 ± 1.76 (0.01–9.99)</td>
<td>2.23 ± 2.96 (0–7)</td>
</tr>
<tr>
<td>Green</td>
<td>0.60 ± 0.64 (0.02–2.37)</td>
<td>1.56 ± 1.79 (0–6)</td>
</tr>
<tr>
<td>Red</td>
<td>0.44 ± 0.44 (0.01–1.70)</td>
<td>0.65 ± 1.03 (0–4)</td>
</tr>
<tr>
<td>Grey</td>
<td>0.45 ± 0.32 (0.02–1.05)</td>
<td>0.27 ± 0.66 (0–3)</td>
</tr>
</tbody>
</table>