
RESEARCH

Conservation Genetics
https://doi.org/10.1007/s10592-025-01683-5

(Hartl and Clark 2006) when populations become isolated 
and evolve independently. Panmictic populations have been 
documented for seals (Coltman et al. 2007), fish (Coimbra 
et al. 2020), and penguins (Nims et al. 2008), while in the 
southwestern Atlantic Ocean, populations of the Franciscana 
dolphin (Pontoporia blainvillei) (Gariboldi et al. 2016) and 
loggerhead sea turtles (Caretta caretta) (Reis et al. 2010) 
are genetically isolated. Therefore, studies on interpopula-
tion genetic structure and diversity are essential for under-
standing species’ evolutionary histories (Taylor and Friesen 
2012) and developing effective conservation management 
plans (Frankham 2010).

Molecular markers, such as simple sequence repeats 
(SSRs or microsatellites), are useful for assessing inter-
population variation and detecting genetic structure. These 
markers are multi-allelic, co-dominant, exhibit high levels 
of polymorphism, and can be used in modern and ancient 
DNA samples when analyzed with appropriate precautions 
(e.g. specific program applications) (van Oosterhout et al. 

Introduction

Different factors can influence the genetic structure and 
diversity of populations. Populations can be genetically 
similar or distinct as a result of stochastic events (e.g. 
genetic drift) and deterministic processes (e.g. natural selec-
tion) (Griffiths 2013), as well as the influence of gene flow 
between them. Altough natural populations may form a sin-
gle genetically homogeneous unit (Bilton et al. 2001) due 
to the effect of gene flow (Young et al. 2013), the absence 
or reduction of gene flow can lead to genetic differentiation 
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Abstract
Seabirds are highly mobile organisms but often exhibit philopatric behavior, with each colony potentially forming a dis-
tinct breeding unit, leading to genetic structuring. Molecular markers are valuable tools for detecting genetic distinctive-
ness and supporting conservation strategies. The pantropical red-footed booby (Sula sula) nests in trees and currently has 
a single breeding site in the southwestern Atlantic Ocean at the Fernando de Noronha Archipelago, Brazil. The species 
was extirpated from Trindade Island, 1200 km off the Brazilian coast, due to forest destruction, and is now classified as 
“Endangered” in Brazil. This study compared the genetic structure and diversity between the extinct Trindade population 
and the extant Noronha population. Blood samples from Noronha and interdigital membrane samples from museum speci-
mens from Trindade were analyzed using microsatellite markers. The Trindade population exhibited greater genetic diver-
sity than Noronha, holding exclusive alleles. Additionally, the two colonies shared ancestry, with subtle signs of genetic 
segregation. This ancestry may be related to gene flow and a founder effect from Trindade individuals in the Noronha 
population. Ultimately, the extinction of the Trindade population led to the loss of a different genetic profile and reduced 
genetic diversity of red-footed boobies in the southwestern Atlantic Ocean. These findings highlight the importance of 
investigating evolutionary processes and dynamics within species for assessing anthropogenic impacts on biodiversity and 
conservation. Translocating red-footed boobies to Trindade Island could restore its ecological function and potentially pre-
vent the imminent extinction of two endemic frigatebird species, which nest on trees and are kleptoparasitic on boobies.

Keywords Conservation · Genetic diversity · Gene flow · Microsatellites · Population structure · Suliformes

Received: 25 October 2024 / Accepted: 19 February 2025
© The Author(s), under exclusive licence to Springer Nature B.V. 2025

Extinction and loss of genetic diversity in a pantropical seabird 
population in the southwestern Atlantic Ocean

Vitória Muraro1  · Aline M. C. R. Fregonezi1  · Leandro Bugoni1

1 3

http://orcid.org/0009-0004-7770-015X
http://orcid.org/0000-0002-4121-9901
http://orcid.org/0000-0003-0689-7026
http://crossmark.crossref.org/dialog/?doi=10.1007/s10592-025-01683-5&domain=pdf&date_stamp=2025-3-3


Conservation Genetics

2004). Additionally, primers developed for one species can 
often be applied to related taxa (Moura et al. 2017). SSR 
markers have been successfully employed to detect genetic 
distinctiveness in various animal populations, including 
marine mammals (Durante et al. 2022), sea turtles (Roden 
et al. 2023), and seabirds (Nunes and Bugoni 2017; Danck-
werts et al. 2021).

Most seabird species breed on islands and archipelagos 
and are highly philopatric (Schreiber and Burger 2001), 
despite their ability to fly long distances (Egevang et al. 
2010; Fijn et al. 2013). As a result, genetic distinctiveness 
between populations is expected, as observed in the masked 
booby (Sula dactylatra, Suliformes) (Steeves et al. 2005; 
Muraro et al. 2024) and the Northern fulmar (Fulmarus gla-
cialis, Procellariiformes) (Burg et al. 2003). However, some 
species show low or even non-existent genetic structure, 
such as the brown noddy (Anous stolidus, Charadriiformes) 
(Mazzochi et al. 2024) and the magnificent frigatebird (Fre-
gata magnificens, Suliformes) (Hailer et al. 2010), likely due 
to gene flow from migrating individuals. Thus, the genetic 
structure of seabirds is complex and lacks a single pattern, 
even among closely related groups (Friesen et al. 2007).

The red-footed booby, Sula sula, is a suliform seabird 
(Chesser et al. 2010) with a pantropical distribution. During 
foraging, individuals can fly long distances (Mendez 2017) 
in search of fish and cephalopods (Seki and Harrison 1989). 
The species exhibits polymorphic plumage, characterized 
by two primary morphotypes: light and dark. The subspecies 
S. sula sula inhabits the Atlantic Ocean. In the southwest 
(SW) Atlantic Ocean, particularly Brazilian waters, the spe-
cies historically bred on Trindade Island and the Fernando 
de Noronha Archipelago. However, currently, only Noronha 
is used as a breeding site (Schulz-Neto 2004; Mancini et al. 
2016), with individuals nesting throughout the archipelago. 
Globally classified as “Least Concern” (IUCN 2018), the 
red-footed booby is listed as “Endangered” in Brazil (MMA 
2014). The species is vulnerable to habitat destruction due to 
its reliance on trees and shrubs for nesting and the laying of 
a single egg per breeding season (Nelson 1978). Addition-
ally, more than 12 colonies have gone extinct in the Indian 
Ocean in the last century (Carboneras 1992). In Brazil, the 
Trindade colony went extinct in the 1970s due to habitat 
destruction primarily caused by the introduction of goats 
and fires that destroyed nesting trees (Fonseca-Neto 2004).

The extinction of seabird colonies compromises genetic 
diversity and reduces species fitness (Danckwerts et al. 
2021). This loss potentially affects entire ecosystems: sea-
birds are essential for transferring nutrients between marine 
and terrestrial environments (Signa et al. 2021) and influence 
other species. On Trindade Island, the loss of the red-footed 
booby colony may have affected two critically endangered 
frigatebird species, Fregata trinitatis and Fregata minor 

nicolli (Olson 2017). These frigatebirds exhibit kleptopara-
sitic behavior (Nuss et al. 2016), relying on fish stolen from 
boobies or other species. The absence of the red-footed 
booby may limit the food supply for these endemic frigate-
birds, whose populations consist of only a few dozen indi-
viduals (Mancini et al. 2016). Efforts to restore colonies and 
recover seabird ecological functions have included chick 
translocations in other ocean basins (e.g. Pacific Rim Con-
servation 2018). However, such initiatives require thorough 
research, including genetic analyses to evaluate the fitness 
and genetic characteristics of each population (Freifeld et al. 
2016). For this, scientific museum collections offer invalu-
able biological material from extant and extinct populations, 
providing insights into genetic variability and support-
ing evaluations of translocation feasibility (Schander and 
Halanych 2003).

In this study, we evaluated and compared the genetic 
diversity and structure of red-footed booby populations 
from Noronha and the extinct Trindade colony using SSR 
markers. We aim to assess whether these populations rep-
resent genetically distinct units and evaluate the impact of 
Trindade’s extinction on the species’ genetic diversity in the 
SW Atlantic Ocean.

Materials and methods

Study area and taxon sampling

The two historical breeding sites of red-footed boobies in 
the SW Atlantic Ocean are separated by 1,880 km. The Fer-
nando de Noronha Archipelago (Fig. 1), located 360 km 
off the Brazilian coast, hosts the only existing colony of 
the species. Despite historical environmental degradation 
(Pessenda et al. 2008), Noronha supports diverse vegeta-
tion, including trees, shrubs, and herbaceous species (Mello 
and Oliveira 2016), providing suitable nesting sites for red-
footed boobies, magnificent frigatebirds, and black noddies 
(Anous minutus). In contrast, the red-footed booby popu-
lation on Trindade Island (Fig. 1), situated 1,140 km from 
the Brazilian coast, became extinct in the 1970s, after three 
centuries of habitat degradation due to the introduction of 
pigs and goats and the use of fire. The island now features 
only scattered patches of low vegetation, inconsistent with 
the reproduction needs of the species (Alves 1998).

Between 2011 and 2018, adult breeding red-footed boo-
bies were captured at nest sites across various locations in 
Noronha (Table S1) for blood sample collection (n = 34). 
Each bird was individually banded to avoid resampling and 
then released back to its nest. For the Trindade population, 
samples were obtained from taxidermized specimens housed 
at the National Museum of UFRJ (Federal University of Rio 
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de Janeiro, Brazil), collected during expeditions between 
1914 and 1988 (Supplementary Material Table S1). A small 
fragment of the interdigital membrane was extracted from 
each specimen (n = 30), as this tissue is highly vascularized.

DNA extraction and microsatellite amplification

DNA was extracted from blood samples (n = 34) using the 
DNeasy Blood & Tissue QIAGEN® kit, following the man-
ufacturer’s protocol. For interdigital membrane samples 
(n = 30), an adapted protocol combining the QIAquick PCR 
Purification kit and QIAamp DNA Micro kit was employed 
(unpublished data). All DNA samples were quantified using a 
Biodrop® spectrophotometer. Eight microsatellite loci were 
amplified from total genomic DNA. Detailed PCR protocols 
can be found in Supplementary Material 1.1. PCR products 
were isolated, amplifications were verified using 2% aga-
rose gel electrophoresis, and only samples with defined and 
clear bands were kept. The resulting PCR products were 
genotyped at Macrogen® in Seoul, South Korea. To ensure 
consistency, 5–10% of previously genotyped samples were 
included in each subsequent genotyping batch. 

Microsatellite analysis

Genotyping peaks were analyzed using the Peak Scan-
ner program (Applied Biosystems). Only high-quality 
genotypes with well-defined peaks were included in the 
analyses. The presence of null alleles was assessed with 

the MICRO-CHEKER 2.2.3 program (van Oosterhout et 
al. 2004). Genetic diversity indices were calculated using 
Arlequin 3.5 (Excoffier and Lischer 2010), FSTAT (Goudet 
1995), and GenePop 4.4 (Rousset 2008). Linkage disequi-
librium tests between pairs of loci were performed in Arle-
quin 3.5.

Population structure between the two colonies was 
examined using multivariate and Bayesian techniques. 
Principal Coordinate Analysis (PCoA) was performed in 
GenAlEx 6.5 (Peakall and Smouse 2012) for multivari-
ate analysis. For Bayesian analysis, STRUCTURE 2.3.4 
was used to determine the most likely number of genetic 
groups (K) (Pritchard et al. 2000). The ΔK method (Evanno 
et al. 2005) was applied to identify the optimal K value 
through STRUCTURE HARVESTER Web 0.6.94 (Earl 
and vonHoldt 2012). A bar graph representing individual 
assignments to different clusters was generated using DIS-
TRUCT 1.1 (Rosenberg 2004). To complement Evanno’s 
method, which may not effectively detect K = 1, the Puech-
maille method (2016) was implemented via STRUCTURE 
SELECTOR (Li and Liu 2018). Additionally, the BOTTLE-
NECK 1.2.02 program (Piry et al. 1999) was used to assess 
whether the populations were in mutation-drift equilibrium 
(Cornuet and Luikart 1996). Further analytical details are 
provided in Supplementary Material 1.2.

Fig. 1 Breeding sites of red-footed booby (Sula sula) in the southwest 
Atlantic Ocean: the Fernando de Noronha Archipelago is the only cur-
rent breeding site for the species, while Trindade Island represents 

an extinct population. Samples from Noronha were collected at Rata 
Island (A), Meio Island (B), and Sancho Beach (C). The sampling sites 
on Trindade Island are not specified
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(HWE). Population reduction tests revealed a heterozygote 
deficit in Trindade, while Noronha showed no significant 
deficits. The pairwise population genetic distance (RST) 
value was low (0.02) and not significant (p = 0.33).

Genetic structure

The highest value of ∆K (Evanno et al. 2005) indicated 
two genetically distinct populations (K = 2; Fig. 2) corre-
sponding to Noronha and Trindade, further supported by 
the Puechmaille method. Despite this distinction, a relevant 
proportion of shared ancestry was observed between the 
two colonies. Principal Coordinate Analysis (PCoA) identi-
fied two main groups. The first coordinate (24.9%) distin-
guished some Noronha individuals, separating them from 
a group comprising Noronha and Trindade individuals. The 
second coordinate (16.1%) indicated subtle differentiation 
between the populations within this group (Fig. 3).

Discussion

Genetic diversity indices

The red-footed booby population on Trindade exhibited 
higher genetic diversity than the population from Noronha. 
However, the HE values for both Trindade and Noronha 
were lower than those reported for other S. sula populations 
in the Atlantic (Morris-Pocock et al. 2016) and for brown 
booby (S. leucogaster) colonies in the SW Atlantic Ocean 

Results

As the results of the sample sequences included in the dif-
ferent genotyping runs were consistent, all batches of sam-
ples were included in the analysis. None of the analyzed loci 
exhibited linkage disequilibrium. Null alleles were detected 
at a single locus. However, analyses showed no significant 
differences when this locus was included or excluded, so it 
was retained for subsequent analysis.

Genetic diversity indices

A total of 26 alleles were identified across the eight SSR 
loci analyzed. All loci were variable in the Trindade popu-
lation, where as only four were variable in Noronha. The 
Trindade population exhibited a greater number of alleles 
(n = 24; Table 1) compared to Noronha (n = 14; Table 1). 
The mean number of alleles per locus was higher in Trin-
dade (3) than in Noronha (1.75). Despite a higher overall 
number of alleles, many in Trindade (n = 16) had low fre-
quencies (between 0.01 and 0.19) and were considered rare 
(with frequencies lower than 0.5). Allelic richness (Ar) was 
also higher in Trindade (2.83 alleles) compared to Noronha 
(1.66 alleles) (Table 1). Trindade exhibited higher genetic 
diversity (0.25) and a greater proportion of exclusive alleles 
(65.4%) than Noronha (0.15 and 7.7%, respectively).

Observed heterozygosity (HO) exceeded expected hetero-
zygosity (HE) in both colonies (Table 1). The test for hetero-
zygote deficiency was significant for Trindade (p = 0.009), 
indicating deviations from Hardy-Weinberg equilibrium 

Table 1 Characterization of microsatellite markers for red-footed booby (Sula sula) populations from the Fernando de Noronha Archipelago and 
Trindade Island, southwestern Atlantic Ocean. It includes the number of samples (n), the number of alleles identified at each site, and diversity 
parameters: allelic richness (Ar), expected (HE) and observed (HO) heterozygosity, gene diversity, and the number of exclusive alleles
Population n Alleles Ar HE HO Gene diversity Exclusive alleles
Noronha 34 14 1.66 0.31 0.34 0.15 2
Trindade 30 24 2.83 0.26 0.27 0.25 17

Fig. 2 Bayesian estimates of population structure for red-footed boo-
bies (Sula sula) from the Fernando de Noronha Archipelago (n = 34) 
and the extinct population of Trindade Island (n = 30), based on eight 

microsatellite loci. The analysis revealed two groups (K = 2). Each ver-
tical line represents an individual, with colored segments indicating 
the proportional representation of genetic group
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Genetic structure

Bayesian analyses indicated K = 2, representing two dis-
tinct populations, altough high levels of shared ancestry 
were observed. PCoA also revealed two groups: one exclu-
sively composed of Noronha individuals and another with 
individuals from both populations, with some distinctions 
between them. The lack of clearer separation between 
populations may partly result from the quality of the DNA 
samples and allelic dropout (van Nieuwerburgh et al. 2009), 
which can hinder the detection of genetic variation between 
populations.

Four scenarios may explain the shared ancestry and relat-
edness between some Noronha and Trindade individuals:

i) Recent segregation of the two populations before the 
extinction of the Trindade colony, due to interrupted 
gene flow for unknown reasons (e.g. the influence of 
non-physical barriers) (Morris-Pocock et al. 2016);

ii) Colonies were segregated when both of them existed, 
but migrant individuals maintained gene flow (Steeves 
et al. 2003);

iii) Past panmictic populations with independent differen-
tiation of Noronha after the extinction of Trindade;

iv) Founder effect from Trindade to Noronha leading to the 
subsequent independent diversification of the Noronha 
population.

These scenarios emphasize the importance of the Trindade 
colony for the genetic diversity of red-footed boobies in 
the SW Atlantic Ocean and its role in forming the Noronha 
population. Thus, the extinction of Trindade may have 

(Nunes and Bugoni 2017). This suggests that red-footed 
booby populations can persist despite low genetic diversity, 
as evidenced in other seabirds, such as albatrosses (Milot et 
al. 2007). Nevertheless, low genetic diversity poses a risk to 
species viability, underscoring the importance of continued 
monitoring (Canteri et al. 2021).

The high number of unique alleles and the elevated 
polymorphism in Trindade suggest a larger effective popu-
lation size and greater genetic diversity than in Noronha. 
It is also possible that individuals from Trindade migrated 
to Noronha and established a population there, resulting in 
a founder effect. Consequently, Noronha may retain only 
a small fraction of the genetic variation from the original 
population (Hartl and Clark 2006).

Significant heterozygosity deficiencies in Trindade may 
indicate the immigration of birds introducing new alleles 
and potentially decreasing heterozygosity (Luikart et al. 
1998; Piry et al. 1999). Migrations, despite the species’ 
philopatric behavior, are plausible as evidenced by docu-
mented movements (Steeves et al. 2003). Migrating indi-
viduals could originate from other Atlantic colonies (e.g. 
Fernando de Noronha, Saint Helena, and Ascension). Popu-
lation sub-structuring due to assortative mating could also 
contribute to heterozygote deficits. However, it is important 
to note that the Trindade samples were collected over dif-
ferent years, which could introduce temporal variation and 
potentially bias the conclusion of the presence of heterozy-
gosity deficiencies in Trindade, as proposed by the Wahlund 
effect (Hartl and Clark 2006).

Fig. 3 Principal Coordinate 
Analysis (PCoA) for red-footed 
boobies (Sula sula) from the Fer-
nando de Noronha Archipelago 
(n = 34) and the extinct popula-
tion of Trindade Island (n = 30), 
based on eight microsatellite loci. 
The two principal axes are plot-
ted, with their values shown
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